Calcium-dependent effects of melatonin inhibition of glutamatergic response in rat striatum.

نویسندگان

  • G Escames
  • M Macías
  • J León
  • J García
  • H Khaldy
  • M Martín
  • F Vives
  • D Acuña-Castroviejo
چکیده

The effects of melatonin, amlodipine, diltiazem (L-type Ca2+ channel blockers) and omega-conotoxin (N-type Ca2+ channel blocker) on the glutamate-dependent excitatory response of striatal neurones to sensory-motor cortex stimulation was studied in a total of 111 neurones. Iontophoresis of melatonin produced a significant attenuation of the excitatory response in 85.2% of the neurones with a latency period of 2 min. Iontophoresis of either L- or N-type Ca2+ channel blocker also produced a significant attenuation of the excitatory response in more than 50% of the recorded neurones without significant latency. The simultaneous iontophoresis of melatonin + amlodipine or melatonin + diltiazem did not increase the attenuation produced by melatonin alone. However, the attenuation of the excitatory response was significantly higher after ejecting melatonin + omega-conotoxin than after ejecting melatonin alone. The melatonin-Ca2+ relationship was further supported by iontophoresis of the Ca2+ ionophore A-23187, which suppressed the inhibitory effect of either melatonin or Ca2+ antagonists. In addition, in synaptosomes prepared from rat striatum, melatonin produced a decrease in the Ca2+ influx measured by Fura-2AM fluorescence. Binding experiments with [3H]MK-801 in membrane preparations from rat striatum showed that melatonin did not compete with the MK-801 binding sites themselves although, in the presence of Mg2+, melatonin increased the affinity of MK-801. The results suggest that decreased Ca2+ influx is involved in the inhibitory effects of melatonin on the glutamatergic activity of rat striatum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of N-methyl-D-aspartate receptor inhibition by melatonin in the rat striatum.

N-methyl-D-aspartate (NMDA) receptor activation comprises multiple regulatory sites controlling Ca2+ influx into the cell. NMDA-induced increases in intracellular [Ca(+2)] lead to nitric oxide (NO) production through activation of neuronal NO synthase (nNOS). Melatonin inhibits either glutamate or NMDA-induced excitation, but the mechanism of this inhibition is unknown. In the present study, th...

متن کامل

Effects of verapamil and nifedipine on carrageenan-induced inflammation in the rat paw

the extracardiac actions of calcium-channel belockers has little been studied.in fact,it has been demonstrated in a number of in viro studies,that calcium-channel belockers are involved in inflammation.here,we evaluated the dose-dependent Effects of verapamil and nifedipine on carrageenan-induced, acute inflammation in the rat paw compared to the anti-inflammatory activites of ibuprofen.the adu...

متن کامل

Dopamine and Serotonin-Induced Modulation of GABAergic and Glutamatergic Transmission in the Striatum and Basal Forebrain

Catecholamine receptor-mediated modulation of glutamatergic or GABAergic transmission in the striatum as well as basal forebrain (BF) has been intensively studied during these two decades. In the striatum, activation of dopamine (DA) D2 receptors in GABAergic terminals inhibits GABA release onto cholinergic interneurons by selective blockade of N-type calcium channels. In the BF, glutamatergic ...

متن کامل

The beneficial effects of riluzole on GFAP and iNOS expression in intrahippocampal Aβ rat model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a neurodegenerative disorder specified by deposition of b-amyloid (Ab) and neuronal loss that leads to learning and memory disturbances. One of the most important causes of AD is glutamate-dependent excitotoxicity in brain regions that is vulnerable to AD. According to previous reported results, it was revealed that riluzole, as a glutamate ...

متن کامل

Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin.

We assessed the effects of melatonin, N(1)-acetyl-N (2)-formyl-5-methoxykynuramine (AFMK) and N(1)-acetyl-5-methoxykynuramine (AMK) on neuronal nitric oxide synthase (nNOS) activity in vitro and in rat striatum in vivo. Melatonin and AMK (10(-11)-10(-3) m), but not AFMK, inhibited nNOS activity in vitro in a dose-response manner. The IC(50) value for AMK (70 microm) was significantly lower than...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroendocrinology

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 2001